
The 13th Technology of Deep Space One1
Nicoias F. Rouquette, Tracy Neilson, George Chen

Jet Propulsion Laboratory
Pasadena, CA 91 109

{ nicolas.rouquette, tracy.neilson, george.chen} @jpl.nasa.gov
(8 IS) 354-9600

Abstract-This paper describes an innovative approach to
,spacecraft fault protection based on automatic code-
generation techniques.

TABLE OF CONTENTS

1. INTRODUCTION
2. MOTIVATION

4. CODE GENERATION
5. IN-FLIGHT EXPERIENCE
6. CONCLUSIONS

3. VALIDATION & REVIEW PROCESS

?dUbJ)/ v, / d a f L O r
1. INTRODUCTION

On October 24*, 1998, the Deep Space One (DS-1)
spacecraft launched aboard a Delta 11 rocket as the first step
towards the bold task of testing and validating 12 new
technologies for future missions. This launch also
represented yet another thrilling event; namely, the
successful test and validation of a 131h heretofore
undisclosed technology: model-based code-generation of
the spacecraft's system-level fault-protection (FP) software
from behavioral state diagrams and structural models.

Until DS-1, the Jet Propulsion Laboratory (JPL) had not
used code-generation techniques on large scale for avionics
software. However, the constraints of the mission design
and development cycle, limited budget and resources
dictated a departure from past practices. The analysis of the
system-level issues started in March 1997 with minimal
staff while the actual design and development of the fault-
protection engine started in earnest in June 1997. Radical
departures from past projects were necessary to complete
the design, development and testing of the system-level
fault-protection in time for launch. The requirement that
post-launch activities be directed by fault protection further
increased the difficulty of the task; on other spacecraft,
such activities are typically handled with sequences.

First, a decision was made in June to use the successful
Mars Pathfinder (MPF) fault-protection engine because this
system made a nice separation of the various concerns
between detecting faults, signaling faults and executing
fault responses. However, the limited resources available
precluded a duplication of MPF's design and development
approach because we had too few software engineers and
too much uncertainty about the hardware, the flight
software and the scope of the system-level issues. This high

' 0- 1234-5678-0/99/$5.00 0 1999 IEEE

degree of uncertainty translates into a high degree of design
instability and volatility. To accommodate this difficult
state of affairs, we shifted the design and development of
the system-level fault-protection software from low-level
concerns about the C language to higher-level concerns
about system-level requirements, issues, strategy, and
tradeoffs. To make this top-down design approach work in
a team environment while retaining sufficient
implementation flexibility, we standardized on using state
diagrams and attribute specifications as design notations for
describing the behavior and structure of fault-protection
designs.

In this paper, we describe the process we used to leverage
model-based code generation from state diagrams and
structural specifications to better respond to the evolving
requirements and scope of DS-1 's system-level fault-
protection design, development, test and operation. The
evolution of the high-level design and the low-level
changes in the flight software architecture and interfaces
contributed to multiplying the number and frequency of
fault-protection software releases thereby creating a
multitude of software integration issues. To address the
resulting software integration issues, we broadened the
scope of code generation to other forms of model-based
analysis techniques more traditionally associated with first-
principle's reasoning about physical models. Additionally,
we describe our in-flight launch and initial acquisition
experience.

2. MOTIVATION
In 1997, the schedule to complete within 12 months the
design, implementation and testing of the FP software for
DS1 looked challenging. At that time, launch was'
scheduled for July 1998; it was later delayed due to late
hardware deliveries. To be sure, the spacecraft is already
complex due to a single-string design, tight pointing
requirements and 12 new hardware and software
technologies. Strategically, we decided to apply code-
generation techniques for several reasons:

Precedent: There was a precedent on DS-1 for the code
generation of the monitors of the Remote Agent
Experiment [2].

Schedule: There were too few software engineers available
to enable quick turnarounds from design to code.

Stability & flexibility: Changes to the software interfaces
and architecture were expected. This in turn threatened

mailto:jpl.nasa.gov

to further exacerbate FP software issues.
Priorities: Strategically, it made sense to focus the team

efforts on analyzing the intricate complexities of the
system-level interactions instead of dividing software-
engineering tasks across the team.

Reviewable functionality: The complexity of the
spacecraft made analyzing scenarios a difficult and
challenging task. We needed a design notation
sufficiently clear to allow several people to follow an
analysis discourse and sufficiently compact to facilitate
such reviews.

Code-generation techniques allowed us to make an
important separation of concerns between what system-
level FP should do (design) and how it should do it
(implementation).

3. DESIGN STRATEGY
Wary of the pitfalls of code generation, we emphasized a
rigorous review process to track progress, to identify
technical difficulties, and to calibrate the scope of the fault
protection design to fit within our resources.

At the level of the FP team, we engaged on a series of semi-
weekly meetings to debate the FP issues, to review
supporting materials and to discuss FP designs. Each FP
monitor and response was managed under the cognizance
of an engineer responsible for the two main aspects of the
design: structure and behavior. Since the scope of the FP
design was still in flux, it was more important to focus on
this primary design content rather than include secondary
design aspects such as telemetry, commanding, and test
interfaces. From a software viewpoint, we counted on the
software architecture to handle all secondary design
concerns in a standard and consistent manner. Thus, the
bulk of the design meetings focused instead on the primary
components of the fault-protection design (see Fig. l),
namely, a structural definition:

- a software interface with the flight software manager

- internal variables to hold state information and

- parameters to calibrate and control the monitor or

task that calls the monitor;

intermediate computations;

response behavior;

and a behavioral definition:

- a state diagram defining the behavior of the monitor or
response as a function of its inputs, internal variables
and previous state.

Building from prior experience with high-level
specification languages [2] and high-level diagrammatic
notations for behavior, we concluded that reviewable
functionality was the most important criteria to enable the
kind of high-level peer design reviews necessary to meet
our schedule.

Figure 1 The DS1 Fault-Protection
architecture

3.1 STATECHARTS

Statecharts provide a good mix of compactness, semantic
precision and readability for representing behavior. These
attributes are important to minimize misunderstandings, to
conduct effective design reviews and to disseminate the
most important details of the FP design to a broad audience
of various backgrounds. Despite the natural fit of state
diagrams as a compact and precise high-level design
notation, several practical issues remain. Specifically: 1)
establishing a standard diagrammatic notation, 2) defining
semantics suitable for the project needs and 3) translating
statechart designs into flight software (See 5 4.2).

Figure 2 shows a simplified view of the DS1 statechart
controlling the system-level activities following separation
from the launch vehicle. For DS1, we used the Matlab
Stateflow@ toolbox to design such statecharts. This tool
enforces standard diagrammatic conventions for
representing statecharts. The topology of the launch
statechart is a three-level hierarchy. At the top level, there
are two states, 'init' and "launch". At a given level, a
transition from a black dot indicates the starting state for
that level. The transition from the 'init' state is predicated
on the 'LAUNCH event. The fault-protection engine
broadcasts this event when it receives indication that the
spacecraft has booted-up and separated from the launch
vehicle. This figure also illustrates some of the extensions
to the statechart notation we introduced for DSI. For
example, we introduced the notion of 'GOT0 either to
show explicitly the notion of statechart reuse like a sub-
routine function (e.g., the 'detumble' statechart is used
elsewhere), or to modularize a complex process into smaller

i LAUNCH

/ launch/ entry: move-on = NM-FALSE;

on NOTIFICATION2 move-on = NM-TRUE;
dol(FPR-START-NOTIFICATlON-T"R2. eclipse-timer);

'configure t e l e c o d
, activate-sequence(te1ecomJ

f [has-finished(launch-config2]

JUMP(sun-standby-ssa);

A-1 detumbie spacecraft/ I
/ I

[:sub-standard NAV ephemeris" I ...
"SRU is suspect"]
acq timed out' I ... ['acq success' I ...

'acq timed out' I ...
'sub-standard NAV ephemeris'

I 1 NOTiFlCATlONl / NOTIFICATIONl\ I
1 st deployment attempt/

J [move-on :=TRUE I 'sun is seen. 1 1
TIMEOUT (wait for eclipse/ 1

t [has-finished(monitor-response-cfg)]
PMEOUT

deDlovment status' 1
fault-protection configuration/
GOTO(monitor-response-cfg);

\ 1
Figure 2 Simplified Launch Statechart

chunks (e&, the 'launch-config' statechart is only used for
launch processing).

The combination of a high-level design approach with code
generation of low-level software implementation resulted in
a strategy that:

- Facilitates frequent tuning of the overall FT design;
- Enables implementation flexibility to adapt to

changing interfaces and software requirements;
- Minimizes the software coding effort to concentrate

instead on design issues;
- Reduces the number of errors introduced by the coding

process.

The design strategy outlined placed great emphasis on
statecharts. This approach matched very well with the
needs of spacecraft fault protection because the essence of
failure recovery is intrinsically a behavioral problem. In our
approach, we relied on the power of teamwork to enact the
best possible behavioral strategies to address the failure
recovery needs of DS 1.

However, this behavioral approach to fault protection
design necessitated an efficient, streamlined design process
to analyze, review and test failure scenarios against the
fault protection design. To meet this challenge, we made a
strategic decision to automate as much as possible the time-

consuming and error-prone aspects of the process through
software code-generation technology as described next.

4. CODE GENEFWTION

4.1 CODE GENERATION ISSUES
Today, many software-engineering design tools feature
code generators that produce target-specific software from
high-level design information. Code generators are highly
popular; they enforce a rigorous approach to generating
software due to their systematic and consistent operation. A
general-purpose code-generation technology does not exist
since there is no general-purpose mechanism to understand
arbitrary design information. Given a high-level design
language and an associated code-generator capable of
handling design models written in that language, we can
establish a taxonomy of code-generation properties to
compare the available technologies. The dimensions of our
code-generation taxonomy derive from five pragmatic
issues as described below.

Algorithmic Customization

Are the algorithm details of the code-generation
approach accessible and modifiable?

Perhaps the most important risk factors involve limitations
in output and algorithmic customization. Changes to the

project environment and requirements may call for
unprecedented flexibility in code-generation algorithms and
output. If this flexibility is at a level beyond that which the
code-generation technology provides, it becomes necessary
to devote resources to work around existing code-
generation limitations. This issue becomes of central
importance in generating code from statecharts, particularly
when the semantics of the statechart notation are adapted to
match the project’s architecture and requirements.

Without adequate customization potential, it may be
necessary to engineer a new code-generator to gain
sufficient control over the code-generation process.
Alternatively, it is possible to post-process the output of the
code generator. Either way, the sudden increase of
resources devoted to supporting or working around the
existing code-generation tool instead of what the tool
generates can result in unacceptable scheduling delays and
expansive costs overruns. These undesirable effects are
easily attributable to a code-generation technology that, a-
priori, might have matched the project needs but doesn’t a-
posteriori. Drastic decisions may follow such as switching
tools, or abandoning altogether the code-generation
approach to revert to a more conventional and predictable
software engineering process.

A-priori knowledge

What knowledge is embedded in the code generator?

Code generation algorithms are often embedded inside a
code generator. While software vendors typically hide such
algorithms inside their code-generation products, such
practices can make customizing a code generator to fit a
project’s needs a difficult task. In fact, the practice of hiding
key algorithms often results in users having to adopt a
vendor’s viewpoint on code generation. This invariably
occurs at the expense of the project, which then needs to
adapt its processes and organizations to accommodate the
product’s constraints instead of adapting the product to the
project’s constraints. The former approach places a burden
on the project to be sufficiently flexible or conservative
enough to avoid reaching beyond the capabilities a code
generation tool can reasonably support. This issue is at the
heart of many project failures.

It is often difficult to cleanly separate all knowledge about a
domain from the code generation mechanisms. Commercial
tool vendors often hide strategic technologies inside their
code generators. This unfortunately results in sealing
domain-specific knowledge about what is being generated
inside the code generator itself. Without access to this
domain knowledge, it is often difficult, and sometimes
legally impossible, to customize the domain knowledge to
fit the project needs without building a code generator from
scratch. To address this issue, many code generators use a
template approach to encapsulate all domain-specific
knowledge in a customizable form. The idea of a template
is to describe what the generated code looks like in terms of
boilerplate text annotated with special tags. A scripting
language defines a framework to replace tags with results
computed from the input data to the code generator as

illustrated in Fig. 3. This figure illustrates a simple
template mechanism where the code generator replaces tags
in the template, @<name> and @<date>, with their
corresponding values computed from the available domain
information. The literal text, combined with the text
produced from evaluating the tag, constitutes the generated
output.

/ * File generated on @<date> */

extern void @amne>-update (void)

Template

Domain Information

0 - Code Generator

/ * File generated on Jan 1 2 , 1998 * /

extern void control-error-update(void)
(

I . . .

Figure 3 Code generation from templates.

Output Customization

What flexibility the code generation framework
provides for custom code?

Code generation tools typically provide output
customization mechanisms that fall in three categories: 1)
code generation templates as described earlier, 2) flags that
control the form of specific output elements and 3)
protected regions to insert and preserve user-provided text
in the generated code.

The two code-generators used for DS1 fault protection
relied on the template mechanism to customize the code
generator output. The second approach assumes that the
customization flags are sufficiently expressive to anticipate
all possible needs. The protected region approach
complements the customization flag approach: users can
add arbitrary code to the generated output at designated
areas of the generated output. This customization practice
then leads to a phenomenon of round-trip software
engineering where user-defined customizations are
preserved across multiple code generation passes. While
this is appropriate when code generation is not a complete
solution, we aimed on DS1 to generate all aspects of the
software including structure and behavior since we didn’t
have the resources to perform round-trip engineering.

Approach

How does the code generator work?

Rodney Bell [I] made a distinction between three
approaches: structural, behavioral and translative. Each
approach makes assumptions about the content of the
model and therefore embeds a-priori knowledge about how
the model information is organized. The structural
approach views model information as characterizing the
nature of the objects in the model and relations such objects
have. The generated code then corresponds to the structural
declarations and definitions of such objects and relations in
the target language. The behavioral approach views model
information as characterizing the internal behavior of
objects, typically expressed in terms of state diagrams. The
generated code then corresponds to the implementation of
such state machines into the target language.
Distinguishing between an application domain and
architecture for this domain, the translative approach
generates code according to a mapping between the
application domain and the architecture.

The template approach uses a set of boilerplates, each
corresponding to a type of desired output. Each such
boilerplate also contains special macro annotations that the
code generator replaces with information from the input
design semantic nature of the annotation. Each generated
file thus corresponds to an expanded boilerplate where all
macros annotations have been replaced in this manner.

The translative approach is not often used; the code
generation process is driven from the mapping of domain
objects onto architecture. In this approach, elements of both
the domain and of the architecture are inputs to the code
generation process.

DS1 used a template approach, which we describe further
in Sec. 4.2.

Risk factors

What impact code generation has on cost, schedule and
technical risks?

For DS1 fault protection, we chose a code-generation
approach that espoused a zero customization policy towards
the generated software. While regarded as a sign of
flexibility, the ability to add custom code significantly
increased the complexity of a software engineering process
based on code generation. Custom code becomes one more
source of information that needed to be managed. This
approach also introduced further complexity because it is
an unnecessary degree of freedom: Solving issues in code
generation at the level of the code generation inputs or even
the algorithm yields architecturally elegant and consistent
solutions across the board. Custom code stands out as an
exception that further complicates the debate between
fixing the architecture, the design and tweaking the result.
Eventually, custom code stratifies into layers of
customizations that break the consistency of the process
and become very difficult to manage. On DS 1, there were
no provisions for a generic customization capability. This
alleviated the need to merge machine and user generated
code.

4.2 CODE GENERATION APPROACH

The Matlab Stateflow@ toolbox performs behavioral code
generator from statecharts. It is also an example of a
template-based code generator where the template
annotation and boilerplate code is embedded inside the
code generator.

In addition to this toolbox, we used another code generator,
a Iterative Template Language Compiler (ITLC). This code
generator is inspired from the Matlab Real-Time
Workshop@ Target Language Compiler (TLC). The Matlab
TLC is a powerful mechanism to associate a customizable
code-generation algorithm for each block in a Matlab
SimulinkB model. Simulink models are defined by an
interconnected set of function blocks where inter-block
connections define the flow of data in the model while
blocks define the processes that operate on that data. To
provide a flexible code-generation mechanism, the Matlab
TLC combines aspects of the Per1 string-manipulation
capabilities, the tag mechanism of HTML and the general-
purpose computing capabilities of Matlab into a code-
generation language. Code generation is a self-contained
process entirely driven by the properties of each block in a
SimulinkB model and by the topology of the block
interconnections.

The Matlab TLC associates a template to a specific block
type. The DS1 ITLC has a coarser granularity as a template
represents the specific boilerplate for a given kind of
generated file (headers, source files, documentation, test
driver, etc.. .). Figure 4 shows the functional block diagram
of the ITLC we designed for DS 1.

. . Generaad

.a , . . 1 Header

1
Generated

Source

Figure 4: Code generation process (Recursive
Template Language Compiler)

Whereas the Matlab TLC operates on a Sirnulink block and
a template for that block type, our ITLC operates on a
specification and a template. The set of annotation tags
constitutes the semantic link between the template and the
specification in that tags can reference elements of the
specification. Additionally, the Matlab TLC is a self-
contained environment whereas our ITLC taps on other
additional sources of information as described in the next
sections.

4.3 KNOWLEDGE OF SOFTWARE INTERFACES

The set of all header files corresponding to the public
interfaces in the flight software is available to the code
generator in terms of a type information database
constructed from such headers. For example, this database
provides a convenient mechanism to generate software for
the ground system to decode the values of enumerated types
into their corresponding symbolic enumerated names.
Additionally, this database is recursively updated with
header files produced by the code generator. This property
enables the code generator to obtain knowledge of the data
structures generated thereby simplifying the process of
writing templates that refer to other structures previously
generated.

To illustrate this process,
we will use a simplified
specification of an attitude
control error monitor as
shown here.

I I

begin variables
MDC-States-t acs-mdc
double error[3]
end variables

I I

Templates extract this information and produce header files
defining C data structures for the flight software:

I I
typedef struct {
#forall variables

#end variables
} rn0n-Q <name>-state-t;

@<variabletype> Q <variable-name>;

Once instantiated,
we obtain a
definition that is
parsed and added to
the type database.

typedef struct {
MDC-States-t acs-mdc;
double error[3];

1 mon control error state t:

This iterative software construction simplifies the process
of instrumenting state variables since they are known to the
code generator. For example, each fault-protection monitor
updates a number of statistical properties about the data
measurements it is monitoring such as minimum and
maximum values (also known as watermarks). We also
defined state statistics for summarizing the behavior of
discrete-valued measurements. Thus, a monitor
Specification defines a set of watermarks and state statistics
to compute as illustrated below for the running example:

STATE-SUMMARY(mdc-states)
HIGH-WATER-MARK(control-error[3])
end statistics

This statistics specification has a meaning in the context of
an architecture for computing the statistical properties of
state variables like the one illustrated below in UML
notation:

Knowledge of what constitutes an analog variable and an
enumerated variable stems from analyzing the type of each
variable involved. On DS1, the following template
illustrates how this process takes place in a 2-step manner:

typedef struct {
#forall variables
Q <declare-telemetry(Q <variable-name>)>

#end variables
} mon-Q<name>-statisticst;

At the first tag expansion pass, each variable name is
expanded separately. At the second tag expansion pass, the
declaration of telemetry statistics is applied to each variable
found in the first pass. If the variable is not instrumented in
the specification, nothing is produced; otherwise, the water
mark or state statistic schema is applied according to the
type of the variable. In the example, this produces the
following result assuming that there are 18 possible values
for the MDC-States-t enumeration:

typedef struct {
MDC-States-t previous-acs-mdc;
int acs-mdc-episode-length;
int acs-mdc-episode-counts[l8];
int acs-mdc-cumulative-counts[l8];
int error_tracking_mode[3];
double error-current-mark[3];
double error-achieved-mark[3];

} mon-control-error-statistics-t;

This iterative code generation process comes full circle in
that the above definition is incorporated in the type
information database to support additional code generation
about the telemetry statistics. On DS1, we generate from
such definitions ground software to decode the telemetry
packets received from the spacecraft and print them
according to their engineering definitions and units. This
process helps us enforce consistency between on-board and
ground software as we change the design, add local state
variables or change the flight software interfaces.

4.3 AGGREGATE SUMMARIZATION OF SPECIFICATIONS

The second difference with the Matlab TLC approach stems
from the process of summarizing specifications into
aggregate specifications. This provides the code generator
with a closed-world view of all relevant entities. This
knowledge was particularly useful on DS1 to enable the
code generation templates to process collections of entities
like the set of all monitors or the set of all responses.

A more subtle application of aggregate summarization
occurred in the definition of the fault-protection telemetry
to indicate the progress of a fault-response statechart
execution. The underlying problem that motivated this
effort was the need of recording a sufficient amount of
information to trace what actions a fault-response statechart
performed during its execution. There is limited memory
available to store such information; yet a response can
spend a significant amount of time waiting for events to
occur (e.g., deploying the panels). We also did not want to
overload the statechart notation with superfluous logging
commands because they would complicate our design and
review process and inconsistencies could emerge between
the logging commands and the actual state definitions. To
define an automatic statechart execution logging
mechanism, we used the aggregate summary of all
statecharts to compute the set of all possible statechart
execution paths. As shown in Fig. 2, one statechart can call
another statechart as a subroutine via the 'GOTO'
mechanism. Thus, we can define a statechart call graph
from the possible ways 'GOTO' statements can be nested.
On DSI, this graph contains 93 vertices and 92 edges. Each
vertex represents a distinct path from a top-level statechart
to the currently executing statechart through a stack of
nested 'GOTO' calls. By monitoring statechart state
transitions and 'GOTO' calls, we defined an algorithm to
update the current vertex in the statechart call graph. Then,
it suffices to record the id of the current vertex in that
graph to fully explain the history of statechart executions
up to the current statechart state. On the ground side, there
is a dual algorithm which looks up the graph vertex ids and
produces the corresponding paths of statechart GOTO calls.
This combination of graph encoding/decoding algorithms
produces a minimum-length mechanism to monitor and
record statechart execution on DSI. With this compact
representation, we also summarized the set of all relevant
external inputs necessary and sufficient to fully explain all
statechart transitions based on external events. This
example illustrates one of the customizations of the
StateflowB toolbox we performed for DSI ; other
customizations are described in the next section.

4.4 EXTENSIONS AND CUSTOMIZATIONS OF STATEFLOW

Modifying a behavioral code generator like Stateflow raises
an acute issue: the vendor, here the Mathworks, has spent
considerable effort in validating the code generator.
Specifically, the vendor has the responsibility to ensure that
the behavioral semantics of the generated code precisely
match the semantics of the diagrammatic statechart
notation. In modifying the code generator, we introduce the
possibility of breaking this property, thereby exposing the

project to additional risks and costs. At first approximation,
this would preclude modifying the Stateflow code
generator. However, it was necessary for the DS1 flight
software architecture to address a number of difficult
issues:

1) Altering the form and organization of the generated
code to comply with the DS-I programming
guidelines.

The Stateflow-generated code is isomorphic to the topology
of a statechart in the following sense that each state
translates into a fixed set of functions:

<State>/
entry: ...
during: ...
exit: ...
on <@/BUT>: ...

I I <entry function>

I I 1

-I <exit function>

Generated Code nl
Our modification consisted in changing the naming
conventions used for the names of the entry, during and
exit functions. These naming convention changes were also
propagated to relevant areas of the generated code as well
(e.g., the enumerated list of state names).

2) Altering the organization of the generated code to
preserve a consistent topological order so that version
control software can track local changes in the state
diagrams to local changes in the generated code.

The order in which Stateflow visits states controls the order
in which state functions are generated. Stateflow uses two
criteria for visiting states: the hierarchical structure of the
statechart and a Matlab-generated identifier. The former
controls how hierarchically nested states are visited; the
latter controls how sibling states at a given level in the
hierarchy are visited. Our modification consisted in using
an external criterion for visiting sibling states: we used the
alphabetical order of the state names.

3) Defining project-specific semantics for event broadcast
in state diagrams.

For each external event defined, Stateflow generates
broadcast functions to inform the statechart of the
occurrence of such events. However, this broadcast
mechanism is unconditional. For DS1, we had to define
lexical scoping rules for broadcasting events. The DS1
fault-protection engine allows three concurrent timers for
each statechart: TIMEOUT, NOTIFICATIONl, and
NOTIFICATION2. A special action provides a mechanism
to start one of these timers. The fault-protection engine is
notified whenever a timer delay expires. However, the fault-
protection engine cannot broadcast the corresponding

EVENT without some checking. External inputs may have
changed and caused state transitions where the timer is no
longer relevant as illustrated in Fig. 2 for the ’deployment
attempts’ superstate. The ’1” deployment attempt’ state
guarantees a minimum of panel deployment effort. Once
this is complete however, we want to make multiple passes
at subsequent deployment attempts until there is a positive
confirmation of panel deployment from the sensors.
Suppose that the positive confirmation occurs before the
pending timer delays expire. The transition to ’extra
deployment delay’ occurs where a new timer delay is
requested. There is now a race situation between the
expiration of these two timer delays. To handle such
situations properly, it is customary to tag timer requests and
match them with the tag of the timer expiration
notification. However, this does not resolve the issue that
the timer can become obsolete because of some other
transition occurred. To handle such situations, we tag the
timer requests with the id of the state where the timer is
requested. Upon receipt of a timer delay expiration, we
check that the current state of the statechart is a substate of
the tagged timer state. This mechanism makes timer
requests lexically scoped relative to the state where the
timer delay is requested.

4) Extending Stateflow to external datatypes.

Normally, Stateflow handles all data types that Matlab
Simulink knows about. Unfortunately, this does not include
C pointers, enumerated types and nested C structures. Since - the DSI software interfaces use these datatypes, we had to
perform some post-processing of the Stateflow-generated
code to restore the proper pointer and structure references.
In that regard, Stateflow-generated files are considered like
templates for ITLC. The expansion of such templates then
makes extensive use of the type information database and
makes the closed-world assumption that all types are
defined in the database. This property allows us to define a
simple search & replace algorithm: given an architectural
definition of which data structures are accessible in a
statechart, we can exhaustively enumerate all leaf attributes
of such structures. Then, we can replace all occurrences of
the leaf symbols in the generated code with the proper
pointer or structure reference syntax to access this leaf
attribute.

Despite the extent of the customizations and improvements
made over time to Stateflow and to ITLC, we adopted a
strategy that excluded all manual editing of the Stateflow
and ITLC-generated code. Since our code generation
approach is complete in that it targets both the structure
and the behavior of the software, there are no other
software attributes that require user input. Without manual
editing of the generated software, we have been able to
focus our efforts on ensuring that the code generators
addressed all software integration issues necessary to enable
early testing of the whole fault-protection software. As
shown in Fig. 5, the integration and test of the whole DS1
avionics software including fault-protection started about
six months after start of the FP design effort.

5. TESTING

As is always the case when new technologies are introduced
to the conservative environment of interplanetary flight
projects, there was substantial discomfort in relying on
automatic code generation. Most of the concerns fell into
three categories:

1) Is the state diagram format adequate to describe the
richness of behaviors required for the fault protection
system?

2) Can the code generator be trusted to implement the
desired logic in C?

3) Will the FP team end up spending more time
debugging the code generator than debugging the
flight software?

The FP team’s approach for alleviating these concerns was
“Testing, testing, and more testing.” The plan was to
rapidly prototype the most complex behavior required of the
DSl fault protection system and exhaustively test its
generated software. The rationale being that if the most
complex behavior can be developed using this
methodology, the feasibility of developing less elaborate
behaviors would no longer be in doubt. The behavior
chosen for the prototype was Standby Mode, which is the
algorithm entrusted to get the spacecraft power positive,
communicative, and thermally safe in case of emergencies.

Testing was conducted in three phases: unit testing, DS1
Testbed testing, and spacecraft system testing. During unit
testing, the goal was to test every branch in the fault
protection logic in a stand-alone environment. On the DS1
Testbed, the objective was to test only the most likely fault
scenarios while including the interactions and timing with
other flight software elements, using a copy of the flight
computer, and the 1553 bus. Finally, testing on the actual
spacecraft concentrated on exercising behaviors that
utilized extensive software to hardware interfaces.

Several requirements hinged on the design of the FP unit
test platform:

Isolation: To remove external dependencies on other
flight software modules, all external interfaces to the
fault-protection software were completely simulated.
Rapid-prototyping: To enable quick turnaround
between analysis and design of FP monitors and
responses, we needed a mechanism to quickly exercise
new designs, to verify that design modifications
preserved earlier results, and exercise complex
scenarios.
Behavior reconstruction: Eventually, testing would
move to other platforms were visibility is greatly
reduced to the real-time operation of the flight
software. To enable detailed analysis of the FP software
behavior, we needed to ensure that real-time events
recorded in other testbeds could be matched to specific
FP scenarios on unit test. Once matched, a non-
realtime replay of the scenario on a unit testbed then

DS1 Fault Protection Testing Schedule

Date

Figure 5: Evolution of the DS1 Fault-Protection scope and progress from design to test.
provided additional visibility into the inner-workings
of the FP mechanisms.

The white-box unit tests were performed one or two
modules at a time, with very little interaction with other
flight software elements and no interaction with actual
flight hardware. Each unit test consists of a script of
stimulus/response commands. Stimulus commands emulate
the state of external interfaces while response commands
check the internal and external state of the FP software.
The unit tests provided little insight into whether the
messages and flags to and from the fault protection system
were synchronized with other flight software elements. In
spite of these shortcomings, this phase of testing was
valuable because the objective was to exercise all paths
through the software. Such extensive testing of the logic
would not be possible on the DS1 Testbed or on the actual
spacecraft due to time constraints. Test time on the DS1
Testbed was an oversubscribed commodity since every
subsystem needed it to validate their software as well as the
operations team who used it to test flight sequences. Time
on the spacecraft was even scarcer since all of flight
software testing had to share time with electrical,
mechanical fabrication and test activities.

To provide white-box visibility into the FP software, unit
test scripts do not run in real-time: the clock can be stopped
at any time to analyze the state of the FP monitors and
responses. Because all external interfaces are simulated in
non-realtime, a unit test exercises only one possible
interleaving of the order in which external events and data
can occur. This limitation turned out to be helpful to
reconstruct specific scenarios seen in other testbeds or the
spacecraft. But there is a drawback as well. Since the unit
test environment simulates all external interfaces, it follows
that external loops between FP and other flight software
modules must be closed within the logic of a test script.
This part turned out to be one of the most challenging
aspects of scripting tests because we did not have a
simulation model of the flight software modules at the level
of their interfaces, internal state and behavior.

Most likely fault scenarios were tested on the DSl Testbed.
Spacecraft testing concentrated on functions that exercised
software to hardware interfaces. About 75% of the testing
was completed in test facility in Pasadena. Late software
changes were tested at Cape Canaveral. The unit test effort
helped the system-level test of the fault protection software
in two other ways:

Adj. Estimate -Goal - 4- -Earned Value ---A- - k t . Hours + Replan Adj. Est

250

200

150

1 0 0

50

0
Figure 6: Evolution of the system-level fault-protection tests necessary for launch readiness.

&$ r' .4b
(#)- !<V 9 4 , . 4;. 4 p . '0 '0 *x. *:. . *:.- ' b 4:. 4 7 . 4:. 0 q,:. 3:. *C. *< e:. i7. ,G' d,!'

\'a

1) To refine the estimates of how many system-level test
cases are necessary as a function of the fault-protection
scope and

2) Adjust the pace of the design & unit test effort in order
to make deliveries of the FP software sufficiently early
to start system-level tests.

Figure 5 shows how the scope of the FP design similarly
evolved in order to reach a fully-tested, consistent FP
system. Figure 6 shows how the scope of the system-level
test effort evolved over time.

6. IN-FLIGHT EXPERIENCE

In addition to the traditional fault-protection software, the
FP subsystem used the code generator to produce the flight
software that would guide the spacecraft through post-
separation and initial acquisition activities. Due to power
concerns, DSl was launched with the main processor
powered off until spacecraft separation, at which point fault
protection software was used to autonomously perform the
following functions:

1) Configure the proper state of all the devices, switches,
heaters and s/w states.

2) Command the Attitude Control System (ACS) to
detumble to rates less than .05 "hr .

3) Command ACS to acquire a celestial reference and sun
point.

4) Deploy the solar arrays by turning on the primary and,
if needed, redundant High-Output Paraffin (HOP)
deployment actuators and turn them off when finished.

5) Command ACS to re-acquire attitude reference, re-

6) Re-configure heaters and configure the
orient to sun and place the panels on sun.

telecommunication system for downlink.

Figure 2 is a simplified picture of the main state chart that
drove the launch and initial acquisition process. This chart
shows the variety of features we used in the state charts:
commands or messages to various tasks, messages from
various tasks and timers. In the launch configuration state,
FP sends commands to an assortment of software tasks or
managers to configure for initial acquisition. In the Stellar
Reference Unit (SRU) acquisition state, FP commands ACS
to estimate the spacecraft attitude and to sun-point, then
waits for a message from ACS that it has completed the
turn, given up (timed-out) or that Navigation cannot supply
ACS with a valid ephemeris. During wing deployment,
timers were used to turn on the HOPS for three minutes.
Then the FP checks for release or deployment status from
the Power subsystem to determine if another attempt should
be made.

One important function in this process was the use of
"waypoints" to allow fault protection responses to
temporarily or permanently interrupt the current response.
Waypoints reside in the detumble and SRU acquisition
states, at which point, if there is a pending fault protection
response, action may be taken.

Our in-flight experience aptly utilized all the state chart
features. First of all, the detumble took almost nine
minutes, six minutes longer that the expected detumble
performance. Luckily, the software was set up to wait for

an ACS message that the rates were low enough to continue
(rather than depending on a timer). Next, ACS could not
acquire a celestial reference, so after trying five different
attitudes, they sent a message to FP that the acquisition
attempts timed-out which enabled the transition to the 1''
deployment attempt state.

Solar panel deployment occurred much faster than expected
and the arrays released 75 seconds after the heaters were
turned on and completely latched up 90 seconds after that.
This positive release and deployment confirmation enabled
the transition to the extra deployment state to allow the
wings to fully extend. In doing so, this transition bypassed
all of the redundant deployment attempts we had allocated
should the sensors have failed for example. The spacecraft
essentially remained idle for over four minutes. However,
the SRU acquired and began tracking during this lull so
ACS immediately started the turn to sun after the
deployment timer expired and the FF was reconfigured.

During the second Sun acquisition state, the SRU processor
began producing internal checksum errors and illegal
software variable values. These events produced a persistent
Celestial Inertial Reference Loss (CIRL) condition for the
CIRL monitor to declare a fault. Since the 2nd Sun
Acquisition State is also a waypoint, the fault-protection
engine suspended the launch statechart and started the
CIRL response. The FP CIRL response power cycled the
SRU, which seemed to clear up the problem after a few
minutes and the SRU re-acquired and began tracking.
After the turn to sun completed, FP commanded a
reconfiguration of the heater states, turned on the power
amplifier and initiated X-band downlink.

addition, the authors wish to acknowledge all the engineers
on the DS-1 team who supportted the development,
implementation and testing of this technology. The
research described in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of Technology,
under contract with the National Aeronautics and Space
Administration.

REFERENCES

[l] Rodney Bell, Code Generation from Object Models,
http://www.embedded.com/98/9803fe3.htm

[2] Nicolas Rouquette and Daniel Dvorak, Reduced, Reusable
& Reliable Monitor Software, Proceedings of the International
Symposium on Artificial Intelligence, Robotics and Automation
in Space, 1997.

Nicolas Rouquette is a senior computer scientist and the
software engineer for the Deep Space One fault-protection
system at the Jet Propulsion Laboratory. He holds a Ph.D.
from the University of Southern California in Computer
Science.

Tracy Neilson is an avionics systems engineer and fault-
protection engineer for the Deep-Space One spacecraft at
the Jet Propulsion Laboratory. She hold a B.Sc. from the
California State Polytechnic University at Pomona. She was
the technical lead engineer for the attitude and articulation
control subsystem as well as fault-protection engineer for
the Galileo spacecraft.

6 . CONCLUSIONS George Chen is the lead fault-protection engineer for the
Deep Space One spacecraft at the Jet Propulsion

Until Deep-Space One, automatic code generation Laboratory. He holds an M.Sc. from the Massachusetts
technology had not been used on large systems for Institute of Technology in Aerospace Engineering. He was
spacecraft avionics software. Overall, we had a positive the attitude control engineer for the Mars Observer and
experience with this approach on DS-1. The rigorous M~~ Global Surveyor projects.
separation of concerns allowed the fault-protection team to
concentrate its efforts on the analysis and design of fault
events and associated responses. This approach streamlined
interfacing with other teams in the project. The effort spent
on tailoring a COTS solution to the needs of the project
underline the importance of open code generation
algorithms and processes to mitigate the risks inherent in
relying on code-generation.

ACKNOWLEDGEMENTS

The authors wish to thank John Slonski for his invaluable
contributions to the analysis and design of the DS-1 fault-
protection system; Daniel Erickson for his admirable
leadership of the DS-1 flight software team; and Dankai
Liu for his commendable leadership of the DS-1 avionics
team. The authors also wish to thank these three managers
for their trust, support and encouragement. This work
would not have been possible without the dedicated
technical support and assistance of Mehran, Vijay and Jay
Thorgenson of the Stateflow team at the Mathworks. In

http://www.embedded.com/98/9803fe3.htm

